Speech Emotion Verification System (sevs) Based on Mfcc for Real Time Applications

نویسندگان

  • Norhaslinda Kamaruddin
  • Abdul Wahab
چکیده

Human recognizes speech emotions by extracting features from the speech signals received through the cochlea and later passed the information for processing. In this paper we propose the use of Mel-Frequency Cepstral Coefficient (MFCC) to extract the speech emotion information to provide both the frequency and time domain information for analysis. Since features extracted using the MFCC simulates the function of the human cochlea, neural network (NN) and fuzzy neural network algorithm namely; Multi Layer Perceptron (MLP), Adaptive Network-based Fuzzy Inference System (ANFIS) and Generic Selforganizing Fuzzy Neural Network (GenSoFNN) were used to verify the different emotions. Experimental results show potential of using these techniques to detect and distinguish three basic emotions from speech for real-time applications based on features extracted using MFCC.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Speech Emotion Recognition Based on Power Normalized Cepstral Coefficients in Noisy Conditions

Automatic recognition of speech emotional states in noisy conditions has become an important research topic in the emotional speech recognition area, in recent years. This paper considers the recognition of emotional states via speech in real environments. For this task, we employ the power normalized cepstral coefficients (PNCC) in a speech emotion recognition system. We investigate its perfor...

متن کامل

Speech Emotion Recognition Using Residual Phase and MFCC Features

Abstract--The main objective of this research is to develop a speech emotion recognition system using residual phase and MFCC features with autoassociative neural network (AANN). The speech emotion recognition system classifies the speech emotion into predefined categories such as anger, fear, happy, neutral or sad. The proposed technique for speech emotion recognition (SER) has two phases : Fe...

متن کامل

Forensic Speaker Verification in Noisy Environmental by Enhancing the Speech Signal Using ICA Approach

We propose a system to real environmental noise and channel mismatch for forensic speaker verification systems. This method is based on suppressing various types of real environmental noise by using independent component analysis (ICA) algorithm. The enhanced speech signal is applied to mel frequency cepstral coefficients (MFCC) or MFCC feature warping to extract the essential characteristics o...

متن کامل

Improving the performance of MFCC for Persian robust speech recognition

The Mel Frequency cepstral coefficients are the most widely used feature in speech recognition but they are very sensitive to noise. In this paper to achieve a satisfactorily performance in Automatic Speech Recognition (ASR) applications we introduce a noise robust new set of MFCC vector estimated through following steps. First, spectral mean normalization is a pre-processing which applies to t...

متن کامل

Emotion Recognition using Dynamic Time Warping Technique for Isolated Words

Emotion recognition helps to recognize the internal expressions of the individuals from the speech database. In this paper, Dynamic time warping (DTW) technique is utilized to recognize speaker independent Emotion recognition based on 39 MFCC features. A large audio of around 960 samples of isolated words of five different emotions are collected and recorded at 20 to 300 KHz sampling frequency....

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008